Estimating Point of Contact , Force and Torque in a Biomimetic Tactile Sensor with Deformable Skin

نویسندگان

  • C. H. Lin
  • J. A. Fishel
  • Chia-Hsien Lin
  • Jeremy Fishel
چکیده

The human fingertip is exquisitely sensitive to touch. Tactile information sensed by the mechanoreceptors of the fingertip make it possible to deduce information such as the location of contact and the normal forces, shear forces and torques being applied to the skin. Humans use this information to grasp and handle objects with great dexterity. Robotic systems seeking to obtain similar performance would benefit from these sensory capabilities. We have previously developed a multimodal tactile sensor – the BioTac®. Normal and shear forces are encoded by changes in the impedance of electrodes distributed over the core of the BioTac when the overlying elastomeric skin and conductive liquid deform. Previous studies have employed machine learning to quantify the relationship between sensory values and tri-axial force. In this study we present analytical methods that successfully estimate point of contact, tri-axial force and torque during contact with the BioTac. Estimating shear force and torque separately when they occur simultaneously remains challenging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Construction of a Novel Tactile Sensor for Measuring Contact-Force, Based on Piezoelectric Effect

In this paper, design and construction of a tactile sensor for measuring contact-force is presented. Mechanism of measuring contact-force in this tactile sensor is based on impedance changing of piezoelectric crystal and voltage of different points in circuit as a result of applying force on the crystal. By considering a specific point in the circuit and recording the changes of its voltage, ma...

متن کامل

Design, Modeling, and Construction of a New Tactile Sensor for Measuring Contact-Force

This paper presents the design, modeling, and testing of a flexible tactile sensor and its applications. This sensor is made of polymer materials and can detect the 2D surface texture image and contact-force estimation. The sensing mechanism is based on the novel contact deflection effect of a membrane. We measure the deflection of the membrane with measuring the strain in the membrane with emb...

متن کامل

Design and Modeling of a New Type of Tactile Sensor Based on the Deformation of an Elastic Membrane

This paper presents the design and modeling of a flexible tactile sensor, capable of detecting the 2D surface texture image, contact-force estimation and stiffness of the sensed object. The sensor is made of polymer materials. It consists of a cylindrical chamber for pneumatic actuation and a membrane with a mesa structure. The inner radius of the cylindrical chamber is 2cm and its outer radius...

متن کامل

Contact Force and Joint Torque Estimation Using Skin

In this paper, we present algorithms to estimate external contact forces and joint torques using only skin, i.e. distributed tactile sensors. To deal with gaps between the tactile sensors (taxels), we use interpolation techniques. The application of these interpolation techniques allows us to estimate contact forces and joint torques without the need for expensive force-torque sensors. Validati...

متن کامل

Design and Construction of a New Capacitive Tactile Sensor for Measuring Normal Tactile Force

This paper presents the design, construction and testing of a new capacitive tactile sensor for measurement of normal tactile force. The operation of proposed sensor has been investigated in ASTABLE and MONOSTABLE circuits. According to the results of these circuits the deviation of ASTABLE circuit results is less than MONOSTABLE circuit results. In addition, the results obtained from ASTABLE c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013